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1 Applications of SVD: least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let
a1, . . . , an ∈ Rd be points which we want to fit to a low-dimensional subspace. The goal
is to find a subspace S of Rd of dimension at most k to minimize ∑n

i=1 (dist(ai, S))2, where
dist(ai, S) denotes the distance of ai from the closest point in S. We first prove the follow-
ing.

Claim 1.1 Let u1, . . . , uk be an orthonormal basis for S. Then

(dist(ai, S))2 = ‖ai‖2
2 −

k

∑
j=1

〈
ai, uj

〉2 .

Thus, the goal is to find a set of k orthonormal vectors u1, . . . , uk to maximize the quantity
∑n

i=1 ∑k
j=1
〈

ai, uj
〉2. Let A ∈ Rn×d be a matrix with the ith row equal to aT

i . Then, we need

to find orthonormal vectors u1, . . . , uk to maximize ‖Au1‖2
2 + · · ·+ ‖Auk‖2

2. We will prove
the following.

Proposition 1.2 Let v1, . . . , vr be the right singular vectors of A corresponding to singular values
σ1 ≥ · · · ≥ σr > 0. Then, for all k ≤ r and all orthonormal sets of vectors u1, . . . , uk

‖Au1‖2
2 + · · ·+ ‖Auk‖2

2 ≤ ‖Av1‖2
2 + · · ·+ ‖Avk‖2

2

Thus, the optimal solution is to take S = Span (v1, . . . , vk). We prove the above by induc-
tion on k. For k = 1, we note that

‖Au1‖2
2 =

〈
u1, AT Au1

〉
≤ max

v∈Rd\{0}
RAT A(v) = σ2

1 = ‖Av1‖2
2 .

To prove the induction step for a given k ≤ r, define

V⊥k−1 =
{

v ∈ Rd | 〈v, vi〉 = 0 ∀i ∈ [k− 1]
}

.

First prove the following claim.
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Claim 1.3 Given an orthonormal set u1, . . . , uk, there exist orthonormal vectors u′1, . . . , u′k such
that

- u′k ∈ V⊥k−1.

- Span (u1, . . . , uk) = Span
(
u′1, . . . , u′k

)
.

- ‖Au1‖2
2 + · · ·+ ‖Auk‖2

2 = ‖Au′1‖
2
2 + · · ·+

∥∥Au′k
∥∥2

2.

Proof: We only provide a sketch of the proof here. Let S = Span ({u1, . . . , uk}). Note that
dim

(
V⊥k−1

)
= d− k + 1 and dim(S) = k. Thus,

dim
(

V⊥k−1 ∩ S
)
≥ k + (d− k + 1)− d = 1 .

Hence, there exists u′k ∈ V⊥k−1 ∩ S with
∥∥u′k
∥∥ = 1. Completing this to an orthonormal basis

of S gives orthonormal u′1, . . . , u′k with the first and second properties. We claim that this
already implies the third property (why?).

Thus, we can assume without loss of generality that the given vectors u1, . . . , uk are such
that uk ∈ V⊥k−1. Hence,

‖Auk‖2
2 ≤ max

v∈V⊥k−1
‖v‖=1

‖Av‖2
2 = σ2

k = ‖Avk‖2
2 .

Also, by the inductive hypothesis, we have that

‖Au1‖2
2 + · · ·+ ‖Auk−1‖2

2 ≤ ‖Av1‖2
2 + · · ·+ ‖Avk−1‖2

2 ,

which completes the proof. The above proof can also be used to prove that SVD gives the
best rank k approximation to the matrix A in Frobenius norm.

2 Bounding the eigenvalues: Gershgorin Disc Theorem

We will now see a simple but extremely useful bound on the eigenvalues of a matrix, given
by the Gershgorin disc theorem. Many useful variants of this bound can also be derived
from the observation that for any invertible matrix S, the matrices S−1MS and M have the
same eigenvalues (prove it!).

Theorem 2.1 (Gershgorin Disc Theorem) Let M ∈ Cn×n. Let Ri = ∑j 6=i
∣∣Mij

∣∣. Define the
set

Disc(Mii, Ri) := {z ∈ C : |z−Mii| ≤ Ri} .
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If λ is an eigenvalue of M, then

λ ∈
n⋃

i=1

Disc(Mii, Ri) .

Proof: Let x ∈ Cn be an eigenvector corresponding to the eigenvalue λ. Let i0 =
argmaxi∈[n]{|xi|}. Since x is an eigenvector, we have

Mx = λx ⇒ ∀i ∈ [n]
n

∑
j=1

Mijxj = λxi .

In particular, we have that for i = i0,

n

∑
j=1

Mi0 jxj = λxi0 ⇒
n

∑
j=1

Mi0 j
xj

xi0
= λ ⇒ ∑

j 6=i0

Mi0 j
xj

xi0
= λ−Mi0i0 .

Thus, we have

|λ−Mi0i0 | ≤ ∑
j 6=i0

∣∣Mi0 j
∣∣ · ∣∣∣∣ xj

xi0

∣∣∣∣ ≤ ∑
j 6=i0

∣∣Mi0 j
∣∣ = Ri0 .
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