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Lecture 8: Octber 23, 2024

Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani)

1 Applications of SVD: least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let
ay,...,a, € R be points which we want to fit to a low-dimensional subspace. The goal

is to find a subspace S of R of dimension at most k to minimize Y, (dist(a;, S) )2, where
dist(a;, S) denotes the distance of a; from the closest point in S. We first prove the follow-

ing.

Claim 1.1 Let uy, ..., uy be an orthonormal basis for S. Then
(dist(a;, S))* = |lail3 — Z <al,u]

Thus, the goal is to find a set of k orthonormal vectors uy, . .., u; to maximize the quantity
i 2?21 (aj, u]->2. Let A € R"*? be a matrix with the i row equal to a!. Then, we need

to find orthonormal vectors uy, . . ., iy to maximize || Auy ||5 + - - - + || Aug||5. We will prove
the following.

Proposition 1.2 Let vy, ..., v, be the right singular vectors of A corresponding to singular values
o1 > -+ >0y > 0. Then, for all k < r and all orthonormal sets of vectors uy, ..., uy

2 2 2 2
[Autlly + -+ [Auelly < [[Ava][3 + -+ -+ [[Avel3

Thus, the optimal solution is to take S = Span (vy, ..., ). We prove the above by induc-
tion on k. For k = 1, we note that

Aup|? = (u, ATAu;) < max R = 0% = | Avy|?.
[Awlz = (wATAm) < max Rara(e) = of = |lAol

To prove the induction step for a given k < r, define
Vi, = {v R | (v,0;) =0 Vi€ [k— 1]} .

First prove the following claim.



Claim 1.3 Given an orthonormal set uy, ..., uy, there exist orthonormal vectors uf, ..., u;( such
that

- Span (u1,...,ux) = Span (u},...,u}).

2 2 2 2
- Ay + -+ [Auly = [JAull; + -+ [[Aug]];

Proof: We only provide a sketch of the proof here. Let S = Span ({u3, ..., ux}). Note that
dim (Vi-,) =d —k+1and dim(S) = k. Thus,

dim<vki_ms) > k+(@d—k+1)—d = 1.

Hence, there exists u;, € V-, NS with ||u}|| = 1. Completing this to an orthonormal basis
of S gives orthonormal 1], ..., u; with the first and second properties. We claim that this
already implies the third property (why?). [

Thus, we can assume without loss of generality that the given vectors uy, ..., 1y are such
that u; € Vk{ 1- Hence,

2 2 2
lAug; < max [|Avf; = of = [|Avel; -
ver_l
[ol=1

Also, by the inductive hypothesis, we have that
1Al + -+ Ay < (| Avrlly+ -+ [ Avealz

which completes the proof. The above proof can also be used to prove that SVD gives the
best rank k approximation to the matrix A in Frobenius norm.

2 Bounding the eigenvalues: Gershgorin Disc Theorem

We will now see a simple but extremely useful bound on the eigenvalues of a matrix, given
by the Gershgorin disc theorem. Many useful variants of this bound can also be derived
from the observation that for any invertible matrix S, the matrices S~ 1MS and M have the
same eigenvalues (prove it!).

Theorem 2.1 (Gershgorin Disc Theorem) Let M € C"™*". Let R; = Y;; |Mjj|. Define the
set
DiSC(Ml‘Z', Ri) = {Z eC: |Z — Mii‘ < Rl‘} .

2



If A is an eigenvalue of M, then

n
A€ UDiSC(Mﬁ,Ri) .
i=1

Proof: Let x € C" be an eigenvector corresponding to the eigenvalue A. Let iy =
argmax;c, {[i|}. Since x is an eigenvector, we have

n
Mx=Ax = Vi€ [Tl] ZM”X} = Ax;.
j=1
In particular, we have that for i = iy,

iolo

n n X X
]
Mio]'x]' = Ax,-o = ZMiO}'ix. = A = ZMio]'ix.] = A-M
j=1 j=1

o J#io ‘o
Thus, we have
Xj

- = Z‘Mio]" = Rj,.

A= Migiy| <) [ M| - % .
0 j#io

j#io
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