Lecture 8: Octber 23, 2024

Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani)

1 Applications of SVD: least squares approximation

We discuss another application of singular value decomposition (SVD) of matrices. Let $a_1, \ldots, a_n \in \mathbb{R}^d$ be points which we want to fit to a low-dimensional subspace. The goal is to find a subspace *S* of \mathbb{R}^d of dimension at most *k* to minimize $\sum_{i=1}^n (\text{dist}(a_i, S))^2$, where $\text{dist}(a_i, S)$ denotes the distance of a_i from the closest point in *S*. We first prove the following.

Claim 1.1 Let u_1, \ldots, u_k be an orthonormal basis for S. Then

$$(\operatorname{dist}(a_i, S))^2 = ||a_i||_2^2 - \sum_{j=1}^k \langle a_i, u_j \rangle^2$$

Thus, the goal is to find a set of *k* orthonormal vectors u_1, \ldots, u_k to maximize the quantity $\sum_{i=1}^{n} \sum_{j=1}^{k} \langle a_i, u_j \rangle^2$. Let $A \in \mathbb{R}^{n \times d}$ be a matrix with the *i*th row equal to a_i^T . Then, we need to find orthonormal vectors u_1, \ldots, u_k to maximize $||Au_1||_2^2 + \cdots + ||Au_k||_2^2$. We will prove the following.

Proposition 1.2 Let v_1, \ldots, v_r be the right singular vectors of A corresponding to singular values $\sigma_1 \ge \cdots \ge \sigma_r > 0$. Then, for all $k \le r$ and all orthonormal sets of vectors u_1, \ldots, u_k

$$||Au_1||_2^2 + \dots + ||Au_k||_2^2 \leq ||Av_1||_2^2 + \dots + ||Av_k||_2^2$$

Thus, the optimal solution is to take $S = \text{Span}(v_1, ..., v_k)$. We prove the above by induction on k. For k = 1, we note that

$$||Au_1||_2^2 = \langle u_1, A^T A u_1 \rangle \leq \max_{v \in \mathbb{R}^d \setminus \{0\}} \mathcal{R}_{A^T A}(v) = \sigma_1^2 = ||Av_1||_2^2.$$

To prove the induction step for a given $k \leq r$, define

$$V_{k-1}^{\perp} = \left\{ v \in \mathbb{R}^d \mid \langle v, v_i \rangle = 0 \ \forall i \in [k-1] \right\} \,.$$

First prove the following claim.

Fall 2024

Claim 1.3 Given an orthonormal set u_1, \ldots, u_k , there exist orthonormal vectors u'_1, \ldots, u'_k such that

-
$$u'_k \in V_{k-1}^{\perp}$$
.

- Span
$$(u_1,\ldots,u_k) =$$
 Span (u'_1,\ldots,u'_k) .

 $- \|Au_1\|_2^2 + \dots + \|Au_k\|_2^2 = \|Au_1'\|_2^2 + \dots + \|Au_k'\|_2^2.$

Proof: We only provide a sketch of the proof here. Let $S = \text{Span}(\{u_1, \ldots, u_k\})$. Note that $\dim(V_{k-1}^{\perp}) = d - k + 1$ and $\dim(S) = k$. Thus,

$$\dim\left(V_{k-1}^{\perp}\cap S\right) \geq k+(d-k+1)-d = 1.$$

Hence, there exists $u'_k \in V_{k-1}^{\perp} \cap S$ with $||u'_k|| = 1$. Completing this to an orthonormal basis of *S* gives orthonormal u'_1, \ldots, u'_k with the first and second properties. We claim that this already implies the third property (why?).

Thus, we can assume without loss of generality that the given vectors u_1, \ldots, u_k are such that $u_k \in V_{k-1}^{\perp}$. Hence,

$$\|Au_k\|_2^2 \leq \max_{v \in V_{k-1}^\perp \ \|v\|=1} \|Av\|_2^2 = \sigma_k^2 = \|Av_k\|_2^2.$$

Also, by the inductive hypothesis, we have that

$$||Au_1||_2^2 + \cdots + ||Au_{k-1}||_2^2 \leq ||Av_1||_2^2 + \cdots + ||Av_{k-1}||_2^2$$
,

which completes the proof. The above proof can also be used to prove that SVD gives the best rank *k* approximation to the matrix *A* in Frobenius norm.

2 Bounding the eigenvalues: Gershgorin Disc Theorem

We will now see a simple but extremely useful bound on the eigenvalues of a matrix, given by the Gershgorin disc theorem. Many useful variants of this bound can also be derived from the observation that for any invertible matrix *S*, the matrices $S^{-1}MS$ and *M* have the same eigenvalues (prove it!).

Theorem 2.1 (Gershgorin Disc Theorem) Let $M \in \mathbb{C}^{n \times n}$. Let $R_i = \sum_{j \neq i} |M_{ij}|$. Define the set

$$Disc(M_{ii}, R_i) := \{z \in \mathbb{C} : |z - M_{ii}| \le R_i\}$$

If λ is an eigenvalue of M, then

$$\lambda \in \bigcup_{i=1}^n \operatorname{Disc}(M_{ii}, R_i).$$

Proof: Let $x \in \mathbb{C}^n$ be an eigenvector corresponding to the eigenvalue λ . Let $i_0 = \operatorname{argmax}_{i \in [n]} \{ |x_i| \}$. Since x is an eigenvector, we have

$$Mx = \lambda x \quad \Rightarrow \quad \forall i \in [n] \quad \sum_{j=1}^n M_{ij} x_j = \lambda x_i.$$

In particular, we have that for $i = i_0$,

$$\sum_{j=1}^n M_{i_0j} x_j = \lambda x_{i_0} \Rightarrow \sum_{j=1}^n M_{i_0j} \frac{x_j}{x_{i_0}} = \lambda \Rightarrow \sum_{j \neq i_0} M_{i_0j} \frac{x_j}{x_{i_0}} = \lambda - M_{i_0i_0}.$$

Thus, we have

$$|\lambda - M_{i_0 i_0}| \leq \sum_{j \neq i_0} |M_{i_0 j}| \cdot \left| \frac{x_j}{x_{i_0}} \right| \leq \sum_{j \neq i_0} |M_{i_0 j}| = R_{i_0}.$$